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h! OMENT IFWARIANTS FOR PARTICLE BEAMS-

Walter P. Lysenko and Mark S. Overley

Los .Alarnos Yalional Laboratory, AT-3, \lS H808, Los Alamos, N\l 87545

ABSTRACT

The rms emittance is a certain function of second moments in 2-D phase
space. It is preserved for linear uncoupled (1-D) motion. In this paper, we
present new functions of moments that are invariants for coup]+ motion. These
invariant were computed symbolically using a computer algebra system. Pos-
sible P:plicat ions for these invariant are discussed. Also, approximate moment
invariants for nonlinear motion are presented.

Moments and Moment

INTRODUCTION

Equations

Let g(;, ~, t) be a function defined on six-dimensional phaae space. We define
the moment of g to be the integral of g over all of phase space, weighted by the
single-particle phxsespace distribution function. That is,

where J is the distribution function, For a discrete distribution consisting of N

particles, with phas-space coordinat~ Fi, $l, we have

(2)

‘rhis form is useful in computing nloments in particle simulation codes. Note
that these morneuts are functions of time rely. A particle beam can be described
by a set of momenta of some basic functions such as the monomials in the
variablee r,p,., y,pM, Z.pt. The moment description haa the advantage of being
rlOEPIYr?lated to l~borak.ory quantities, For example, the centroid of a beam in
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For particle beams in most noncirc~dar machines, the distribution function
accurately satisk the Vlasov equation

(3)

‘,vhere F is the sum of the external force and the space-charge force, whose
potential @ satisfies the Poisson equation

Jv2# = –~ Vp f(;, p’,t),
co -m

(4)

If we are describing the beam with moments, we ned a way to relate the inte-
gral in the above formula to the moments. (Thk is the major problem in any
simulation scheme using moments as the dynamical variables, We will not be
concerned with this here, however. ) The rule for differentiating moments with
respect to time is given by~

d d

Z<g>’= <z-’ (5)

which says that the derivative of a morncnt is the moment of a derivative. There-
fore, it is e-y to get the equations of motion for the moments. For example,

the equation for the < Xp= > moment i J

d
~<xp=> = < ($Z)P= > + < Z(’.$p) >

1= -<p; >+<zi~z>
m

(d)

1
=— <p~>+<z(ao +alz+ apa+ “,)>

m

= ‘<p~>+a0<r>+al<z2 >+aac ‘> +’..,
m

Because we expandd the force into a ~~owcr series, the right hand side of the
ef(uation contains only moments, So the moment equations are a system of lir,-
mr differential equations except that, in the caae with space charge, the force

coefficients will depend on the spatial moments,

Emittance and RMS Emittance

Emittance cnn be defined in various wayo, but it is always some kind of area

in a 2-D projection of phase space. If tho z-degree of fr-dom is uncnupled from
the y d : directions, then the total emittance in the r-direction is a conserved
quantity kause it is the Jame M the phase volume. It iu an invariant that dom

not depmd on tht’ force.



The rms ernittance
of second moments:

in the z-direction is defined to be the following function

t= = d<x~><p: >–<zpz >=. (7)

This definition assumes that the beam centroid is at the origin. Subtracting
< z > and < p= > from x and p., r=pectively, in the above definition will
give the general formula. The rms emittancc is conserved for linear, uncoupled
motion. To see this, simply differentiate c= with respect to time, assuming the

force is proportional to z, that is, assuming dp=/dt = Ulz.
For uncoupled motion, the rms emittance is somewhat like the total emittance

in that it is also an invariant that does not depend on the force (value of constant
al). But it is invariant only for linear forces. For coupled motion, there are nc
know invariant that are functions of emitttmcea, even for linear forces. The

problem we solve in this paper is to find other moment invariant, analogous
to the rms emittance, that are valid for more general situations than linear,
uncoupled motion.

FINDING NEW INVAFUANTS

Setting Up the Problem

Consider the following homogeneous qusdratic function of the second mo-
ments in one dimension (the z-diration).

I = C~l “ 12><Za> +Cla<#>C:Zp=> +C13<%2>< p:>

+ c~~ < Zp= >< X2 > i-ca~ < Zpg ;>< Zp=

+ c31<p; ><z2>

For the following choice of the coefficients,

cl~ = 1.,

C22 = --1,

other ci) = 0,

the function 1 is the square of the rrna ●mittance
therefore an invariant for linear, uncoupled motion.

> (8)

(9)

in the z-direction and is

Let us now find the moment invariant for linear motion in 2-D. To do this, let
us start with an expruaion like Eq. (8) but include all ~nd moments involving
both the z and y dir~tiono, Then we will attempt to find a set of values for the
coefficients that mak~ the expression an invariant.

First define the vector

.Y = (crz>, <xpt>, cxy>, <Ip”>,

< pz~ ~,< Prpr >!< Prv >9< psp~ ‘9

c yr >,< yps >,< !/:!/ >,<ypy>!

< ~“.r >,<p”pr >,< p“~ >s<p~p” >).

(lo)



This is a list of all the possible moments that our invariant can contain. Then
the proposed invariant can 1-e written as

1 = XTC.Y. (11)

Remarkably enough, in writing Eq. (11), we have already sufficiently restricted
the form of the invariant so that by applying the condition

#=o, (12)

we can solve for the coefficient matrix C and thereby determine the desired
invariant. In taking the time derivative, we must assume that the forces are
given by

Notice the symmetry of the
that the force be derivable

invariants do not exist. )

F= = ~urr + !/Uru!
(13)

Fv = zu=v + yavv.

force coefficients, which is equivalent to requiring
from a potential. (Without this restriction, the

Because of the size of this problem (we have to solve for 55 coefficients), we
used the SM P (Symbolic Manipulation Program) computer algebra system to do
the algebra symbolically.

Using the SMP Computer Algebra System

The computer algebra system 9M P is a product of Inference Corporation (T.m
$.ngeleu, CA). [t is an interactive system that takea commands at the terminal
and returns results on the screen. lt can alao read files containing commando. In
this section, we show some general featurea of this syotem. In the next section,
we will show how our actual problem WM adved,

In SMP, most objects such u functions, matriceu, and parte of expr=sions are
al] rep[ esented by things CAkd projections. For example, If p is a polynomial,
then the projection p [3] is the third term To see how SMP works, consider an

object f, Now define some properties of f, If we think of f as an array,
the co~ d

f[l,4]:6

defines the ( 1, J)-th ●lement to have value 6, ,Now add another property to
issuing the following command:

:[X]:7

then

f by

This rauses f to map tht! quanlity x into the value 7. If we now enter the
comrnarld



f[$x] :$x-z

we define the function j(x) = X2. (The $x is a dummy argument and is said
to be generic, ) Now when f is evaluated, an argument of 1,4 returns 6, an
argument of x returns 7, and any other argument returns the square of the
argument. SO, for example, the value of f [xI is 7, but the value of f [y] is Y2.

XIore complicated definitions are possible. The following

fr$x -- ($X>7 I $X<-9)] : 75

says that if the argument is greater than 7 or less than -9, then the valup of f
is 75, The symbol .= should be thought of as ‘such that. ” Existing built-in
functions can be redefined. For example, the following

D[h[$x] ,{$X,l, $Y}] :g[$y]

adds to the differentiation function D the rule that the derivative of the function
h is g, The list {$x,1, $y} means that we are taking the first derivative with
respect to $x and evaluating at $y. After we make this definition, D[X-2,x]

returns 2x so the old (built-in) definition is stiil there. But D[h [z] ,zI returns

g[zl, using the new rule.

THE NEW LINEAR INVARJANTS

To ~olve the problem of the invariant for the linear coupled motion, we had
to define many SMP functions. We show some of these here. In the SM P code,
the moment c g > is denotd by morn[gJ. The linearity property of moments is
defined by the following SM P code,

mom[$x + $$y] :: mom[$x] + mom[$$yl

mom[$$y $x .= tost[$xl] :: $x mom[$$yl

The $$y symbol is said to be doubly generic and stande for a complete expression,
not just a single term, The function to-t is detined to return a true val~e if
the argument is a constant. The following definitions cauae <g> in the input
commands to be translated into aoa~] and print out mom~] M <g>.

!,<11 := “mol[”

1,,>,) :. II ,,

-mo8[Pr, $x] : Fmt[,’’<’’, $x>”]>”]

“flis makm it possible to communicate with SMP using familiar notation.
\Ve defin~ momonts to be the list of variabl~. Right now, we are doing th~

2-D case, so we define this list aa follows.

❑omants : {X, px, y,py}



iNow define der to be the function take takes a time derivative. In addition to
giving it the usual rules for differentiating possesed by the built-in D function,
we add the rules for taking derivatives of coordinates.

der[x] :: px
der[yj :: py
der[px] :: fx
der [py] :: fy

Now we give the rule that the derivative of the moment is the moment of the

derivative.

der[mom[$x]] :: mom[der[$x]]

We define a list of s=ond moments, called vector by the following piece of SM P

code.

vectors: Ldist [rnorn[Union [Flat [moments**mornents]111
vector: Union [voctor2]

This takea the outer product of memento, flattens this matrix into a list, and
converts this list into a list oi moments of these quantities.

Now letting cmat be some matrix, we define ●q, the proposed invariant.

●❑✚✚Ex [vector. cmat. vector]

This is the same as Eq, ( 11), which says that our proposed invariant is a homo-
geneous quadratic combination of second moments. After defining the forces,

fx : x a[x, xl + y a[x, yl

fy : x a[x, yl + y *[yl Yl

we differentiate our proposed invariant with the dor function. Setting the coef-

ficients of the moments and forces individually to zero leads to a linear system
of equations for the coefficients, Using a built-in function in SMP to solve this
system yields the coefficient in the invariant. Substituting th~e coefficients
into the expression for ●q gives us the desired invariant. The r~ult, which we
call la, is the following:

la = c: + 2C:V+ c:, (14)

where
~2
z = <x ’>< p:> < Zpz >=,

and t~v = <ry><p=p” >-<rp”><vpr >.

(15)

l?quation ( 14) i~our main result. It says that for two dimensions, the invariant is
the sum of the square of the r-rms ●pittance, the square of the y-rms emittanc~,



and a third term, which could be called a “cross-emit tance. ” There is a similar

result for three dimensions.
M/e also found that there are other invariants for linear motion. If we search

Lr invariants that are homogeneous quad-atic functions of fourth moments, we
obtain (for l-D)

14 =< Z4 ><p: > -4< Z=p=><zp:> +3 <Zzp; >2. (16)

For sixth moments, we obtain

18 = <z 0><p:>-6< z5pz><zp:>
(17)

+ 15 c Zdp: >< Zzp: > -10< dp: >2.

There are apparently an infinite number of
and 3-D versions of all of them..

There is a very simple way to generate
the form 1

where

dY = Z+y

such invariant. There are l-D, 2-D,

all these invariants.

~)’ >s~m!

+ z,

They are all of

(18)

(19)
P = Pr+p”+pl,

and where the ‘symmetrized” moment is defined by its linearity properties

<g+h>nvrn = <g >,p+< h >,m
(~-j)

<og>,v~ = a<g~~rn

and by its action on monomials

< z’~= yhp; Zmp; >*W = < 1’#= ykpj Zmp: >< Z’p: ~’p: Znp: > . (21)

This says that the aym.rnetrizd moment is just the usual moment, multiplied
by a moment in whic~ we interchange the powers of th~ coordinates and thr
conjugate momenta, The following, which computes the lowest-order invariant

in 1-D, shows how thiu works.

21a = < (z - p.)a >,

= <z2- 2zp= + p: >,

= <r2 >,- (2’42 < Zp= >,+ c p: >,

= <x2>< p~>–2<1pZ><p=z> +<p~><rz>

IJ = <r=>< p:>-. <lpr>~



NONLINEAR INVARIANTS

Consider some distribution in (z, P,) phase space. Now consider a linear
transformation to a new coordinate system (z, ~,) in which the moment < 3P= >
vanishes. The rms emittance for this distribution is given by

c= = <Z=>< p:>- <xp=>z= ~
(23)

In the new coordinates, the rms emittance is the product of the rms widths
in the ~- and ~z-directions, It is like an area in phase space. The cross term
— < Xpz >2 in the definition of the rms ernittance serves to take out the effect
of the “tilt” in the phasespace distribution.

If nonlinear forces are present, then the “twist” of the distribution can change.
For example, if the initial distribution is 8. line in (z, p=) space, the action of
nonlinear forces will introduce an S-shape into the line. This caus~ the rms
ernittance to grow. If we seek a moment invariant that is preservd in the

presence of nonlinear forces, then we need terms like < zp~ > in the invariant
that will take out the effect of the twist in the distribution. The higher invariants

1. do contain such terms; however, as we shall see, these are not nonlinear
invariants.

But let us look for nonlinear invariant that are combinations of the 1..
Consider the foUowing candidate for a nonlinear invariant.

J=14+cI: (24)

Because it is a function of linear invariants, J is constant for linear motion
regardless of the value of c. Let us try to choose a value of c that will make J a

nonlinear invariant. To do this, consider the distribution in (z, p=) phase space
that is constant in the region

and zero elsewhere. This distribution Is shown in Fig. 1. ‘This distribution has

four pararneter9: Z“~., Ap,, a, and ~. In order to get simpli~ ihe final result,
let us eliminate the parameters ApZ and @ in favor of the rma ernittance c= and
another parameter 6, which me~urea the amount of twist in the distribution,

(26)

Now compute the linear invariant Iz and /4 for the distribution parametrized
by z~.=, C=, a, and 6. This can be done using SMP to symbolically compute the
required integrals over the distribution given by Eq. (25).

(27)



Fig. 1. This phase-space distribution waEused to obtain a nonlinear Lwariant by requiring
that the value of the invariant did not depend on the amount of “twist” in the distribution.

14 =
156
# + 20 A:” + 0(6’) (28)

Notice that these linear invariants depend only on the rms em~ttance c= and
on the parameter 6, which meuures the amount of twist in the distribution.
These invariants do not depend on cr, the amount of tilt in the distribution,
nor on Z~U=, which measures the eccentricity of the distribution. Substituting
the above 12 and I, in the definition for J, we see that if c = -10, then J is

independent of the twist parameter 6, So the desired invariant is

(29)

The ‘ltiIity of this invariant waa verified numerically for a situation in which
a uniformly filled ellipse in phase space was transformed by a system containing
linear and cubic forces. Figure 2 shows the initial and !inal phase-space distri-
butions for our example. The strength of the nonlinearity is sufficient to put a
noticeable twist in the distribution, which initially did not have any. Figure 3
shows some of the linear invariants and the new J invariant as functions of time,
simwing their evolution between the initial and final states shown in Fig. 2. In
this graph, all invariant are normalized by their initial values. We see that the

linear invariants are not constant and that the 5igher invariant~ are even more
sensitive to the nonlinearity than is /2. The new invariant J is more constant



P= P,

Fig. 2. The nonlinear invariant was shecked by simulating the evolution of the initial
distribution shown on the left in the presence of linear and cubic forces. The final distribution
is shown on the right. The strength of the nonlinearity, for the given beam size and the elapaed
time chosen, ia large enough to introduce a noticeable twist in the distribution.

3

2

1

0
t

Fig. 3, The linear invariance In and the approximate nonlinear invariant J are shown aa
functions of time for the situation described in Fig, 2. All invarianta are normalized by their
initial valu~, Even though the quantity J is a linear combination of 14 and the nquare of la,
it is approximately constmt.



than the rest, but it is not an exact invariant.

DISCUSSION

The moment description is useful because it is so closely related to Iaboratol y
quantities, The well-known rms emittances cc, CV,and c. are functions of second

moments.

6: = <z2><p; >–<zp=>2
2

<y l><pv 2>-
‘U = < ypv >2 (30)

c: = <Zz><p; >-<zp, >l

These quantities are invariant for linear, uncoupied (l-D) motion. If an ac-
celerator or beamline has any coupling forces, even if they are linear, the rrns
emittance can change. Thus, the growth in an rms emittam.e is not necmarily
an indication of nonlinearities in the machine.

We have shown in this paper a new moment invariant, la, that is conserved

for linear forces even in 2- or 3-D. In 1-D it is the same aa square of the rms
ernittancc. In 2- or 3 D it is the sum of the squares of the rms emitt~ncea

together with new cross terms. In three dimensions, we have

Ia = <z~><p: >-<zp=>=

+ <y b<p; >-<ypv>s

+ <z b<p:>-<zp, >~

+ 2cxy><p.p~ >-2czp”><yp. >

(31)

+ 2czz><prp, >-2<zp. ><zp= >

+ 2<yz><pvp, >-2<yp, >< Zpv>.

This invariant, or my of our other new invariant, is eaaily obtained ueing the
formula given by Eq. (18). Jn this caae, we just ●xpanded

<(r+y+z-p=- PU - Pt)2 >s~m.

The utility of the new invariant is that it is conserved for any kind of linear
motion, even with coupling prment. Therefore, if a simulation or measurement

showed that the quantity la haa increased, thrn we can conclude that the accel-
erator or beamline contains nonlinearities,

We have also found other moment invariant for linear motim that are ho-

mogeneous q~ .rlratic combinatl’.ma of higher moments; these are the quantities

/2, /4, ffi, etc. All these exist irl l-D, 2-D, and 3-D versions.



Consider, for a moment, uncoupled linear motion, We know that the beam
current and the rms ern.ittance are the only significant bearr, parameters in this
situation=. Suppose we have some beam and some Leamline. All we have to
know is whether the beamline can transport the emittance of our beam. Neither
the details of the machine acceptance nor of our beam are important. We know
that we can always make a linear matching section to match our beam into the
machine. This is true because any beam of a given e,nittance can be transformed
by -, linear transformation into any other beam of the same emittance.

The above is only true if our knowledge i~ limited to second moments. That

is, we consider two beams identical if they have the same collection of mcments,
!lp to second order. If we d=cribe o~i beam to higher order, then we need
liew invariant. This is how the higher invariants J“ presented in this paper can
be used, For example, if we describe a beam by moments up to fourth order,
then the invariant beam parameters are /2 and /4. (12 is the square of &he rms
crnittance, of course. )

In the more general situation of linear coupled motion, tl.e same ideas apply,
but we need additional invariant. In a smond-orcler aeacription in 2-D, we need
two invariant, but we have only one, the 2-D version ot’ la. We need further
work to determi” ~hese invariant. Before we discuss extending these results to

nonlinear motiou, let us consider other possible u3ea for the linear invariants.
In numerical simulations, it is useful to use slow variables. For example,

for nonlinear oscillatory single-particle motion, it is better to use amplitude-
ph~sc variables rather than z, p= becau~ ~ we are solving dirmtly for the effect
of the nonhnearity, If the nonlinearity is zero, then the amplitude a.ud phase
are conctantm In the same way, we could Jse our moment invari~nts as the
dynamical variables in a simulation code, To do this, we have tc determine all the
independent invariants up to a given order, In linear singleparticle motion there
is a simple relation betw~n the amplitude-phase variablea and the action-angle
variables, If the new moment invariants are like the action vuiables, perhaps
we can find a Hamiltonian formulation of the moment quatione, Therefore, we
believe the linear moment invariants may have significance both in numerical
simulation and in theoretical am Iysim of beam motion.

“The benrn current depends on the charge in the beam, which is the :eroth phros-spme
moment snd could be considered to ~ the invsriant /0 in our ocheme, We ptefer to not
consider hsre momentabelow second order and to consider apace charge u ● source of forces
in a&litia to thas of the bemdine elements.



Because the linear moment invariants respond only to nonlinearities, they
are useful in studying nonlinear motion as well as linear motion. However,

determining nonlinear invariant would be even more useful. For example, we
would like an invariant that is constant if no fifth- or higher-order forc~ are
present. Such invariant would help us to amdyze aberrations. We found the
apprcwimate nonlinear invariant J by assuming a certain model for a beam.
The difficulty with working with nonlinear invariants concerns the handling of
correlations. For example, if we differentiate the expression for J, we get many
terms that do not appear to cancel. However, in a particular beam, such as in
the example used in the numerical simulation shown in this paper, high-order
correlations are absent. Furthermore, some of this lack of correlation is preserved
throughout the motion. (Exactly what happens depends on the initial condition
and the forces. ) Th!s means that some of the higher-order moments are actually
functions of lower-order moments. The behavior of these correlations must be
understood before we can derive more useful nonlinear moment invariant in the
way we did for the linear caae. Fortunately, the evolution of the correlations can
be studied by the eaay-tctuse moment quations, This ia because the correlations
are juet combinations of memento; they consist of difference of moments and
~he exprewion describing the moments in the abuence of correlations.
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